| 网站首页 | 产品中心 | 资料中心 | 下载中心 | 图片中心 | 在线提问 | 售前服务 | 售后服务 | 联系我们 | 网站地图 | 

  您现在的位置: 国普科技 >> 资料中心 >> 光纤领域 >> 光学技术 >> 文章正文

溅射技术发展的历程
作者:佚名    文章来源:不详    点击数:3330    更新时间:2007-2-13

Abstract: Since the publishing of sputtering techniques, it is in the course of unstopping improvement. Such as raise the rate of sputtering, improve the running stability, changing the way of electricity and improve the quality of film, etc. the following article is trying to find some regularity, proved some conception in the course of its improvement, and participate in the discussion of sputtering techniques.     

  Keywords: Sputtering TechniquesEnhanced EffectAssist Ion Beam Deposition

 

  摘要  从溅射技术问世以来,处于不断改进的过程。围绕提高溅射速率;提高运行稳定性;改变供电模式;提高膜层质量等等方面,不断地推出新的工作模式。本文试图在整个发展历程中,寻找某些规律,提供一些构思,参与溅射技术发展的讨论。

  关键词  溅射技术;增强效应;离子束辅助沉积。

 

 1842年格洛夫(Grove)在实验室中发现了阴极溅射现象。他在研究电子管阴极腐蚀问题时,发现阴极材料迁移到真空管壁上来了。但是,真正应用于研究的溅射设备到1877年才初露端倪。迄后70年中,由于实验条件的限制,对溅射机理的认同长期处于模糊不请状态,所以,在1950年之前有关溅射薄膜特性的技术资料,多数是不可靠的。19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。到了80年代,溅射技术才从实验室应用技术真正地进入工业化大量生产的应用领域。最近15年来,进一步发展了一系列新的溅射技术,几乎到了目不暇接的程度。在21世纪来临的时刻,回顾一下溅射技术发展的历程,寻找其中某些规律性的思路,看来是有一定意义的。

1.         最初溅射技术改革的原动力主要是围绕着提高辉光等离子体的离化率,增强离化的措施包括:

l       热电子发射增强由原始的二极溅射演变出三极溅射。三极溅射应用的实际效果对离化率增强的幅度并不大,但是对溅射过程中,特别是在反应溅射过程中,工艺的可控性有明显地改善。

l       电子束或电子弧柱增强演变出四极溅射。Balzers一直抓住这条线,形成有其特色的产品系列,最近几年推出在中心设置一个强流热电子弧柱,配合上下两个调制线圈,再加上8对孪生靶,组合成新型纳米涂层工具镀膜机。是一个典型实例。

l       磁控管模式的增强溅射磁控溅射。利用磁控管的原理,将等离子体中原来分散的电子约束在特定的轨道内运转,局部强化电离,导致靶材表面局部强化的溅射效果。号称为“高速、低温”溅射技术。磁控溅射得到广泛应用的原因,除了效果明显之外,结构不复杂是一个重要的因数,大面积的溅射镀膜工艺得到推广。应该看到,靶面溅射不均匀导致靶材利用率低是其固有的缺点。

l       最近有人推出离子束增强溅射模式。采用宽束强流离子源,配合磁场调制,与普通的二极溅射结合组成一种新的溅射模式。他不同于使用窄束高能离子束进行的离子束溅射(这种离子束溅射的溅射速率低),采用宽束强流离子源,配合磁场调制后,既有离子束溅射的效果,更重要的是具有直接向等离子体区域供应离子的增强溅射效果。同时还可以具有离子束辅助镀膜的效果。

2.         1985年之后,溅射模式的变革增加了新的目标,除了继续追求高速率之外,追求反应溅射稳定运行的目标、追求离子辅助镀膜获得高质量膜层的目标、等等综合优越性的追求目标日益增强。例如:

l       捷克人J.Musil在研究低压强溅射的工作中,在磁控溅射的基础上,重复使用各种原来在二极溅射增强溅射中使用过的手段。从“低压强溅射”一直发展到“自溅射”效应。其中大部分工作仍然处于实验室阶段。

l       针对立体工件获得均匀涂层和色泽,Leybold推出对靶溅射运行模式。在随后不断改进的努力下,对靶溅射工艺仍然具有涂层质量优异的美名。

l       针对膜层组分可随意调节的目标,推出非对称溅射的运行模式。我国清华大学范毓殿教授采用调节溅射靶磁场强度的方法,进行了类似的工作。

l       推出非平衡溅射的运行模式最基本的目的是为了改善膜层质量,呈现离子辅助溅射的效果。后来,一些研究工作扩展磁场增强的布局,磁场在真空室内无处不在,看来效果并不理想,“非平衡”的热潮才逐渐降温。

l       1996Leybold 推出多年研发的成果:中频交流磁控溅射(孪生靶溅射)技术,消除了阳极消失效应和阴极“中毒”问题,大大提高了磁控溅射运行的稳定性,为化合物薄膜的工业化大规模生产奠定了基础。最近在中频电源上又提出短脉冲组合的中频双向供电模式,运行稳定性进一步提高。

l       最近英国Plasma Quest LimitedPQL)公司推出S400型专利产品,名为“高密度等离子体发送系统”(High Plasma Launch System),属于上面提到的离子束增强二极溅射模式。其特点是:高成膜速率、高靶材利用率(>95%)、膜层质量优良。在光伏器件、光电薄膜、半导体薄膜、磁记录薄膜、精密光学薄膜和工程涂层方面得到广泛应用。

3.    提高溅射速率是有一定限度的。施加到靶表面的功率密度与靶的溅射速率成正比。等离子体放电空间的离化率越高,靶的溅射电流才可能增大。于是有了种种强化电离的手段来提高溅射速率。实际上限制溅射速率的原因是:靶(阴极)能够耗散多少功率?溅射离子的能量大约70%需要从阴极冷却水中带走,如果这些热量不能及时带走,靶材表面将急剧升温、熔化、蒸发(升华)从而脱离溅射的基本模式。

l       J.Musil研究了高速率溅射和自溅射,施加的靶功率密度高达50W/cm2,甚至更高,但是:只有Cu,Ag,Au靶呈现自溅射效应。在实验室特殊条件下呈现高速率溅射效果,在工业化应用上很难实现。反过来证明:工业化应用中适合的功率密度应该在30W/cm2以下。

l       为了保证工业化应用中靶的稳定运行,直接水冷而且靶材导热性能良好的情况下所施加的功率密度应该在25W/cm2以下。间接水冷而且靶材导热性能良好的情况下所施加的功率密度应该在15-20W/cm2以下。

l       如果靶材导热性能差、靶材由于热应力而引起碎裂、靶材含有低挥发性的合金组分等情况施加功率只能在2-10W/cm2以下。

l       靶功率的耗散能力要求精心设计靶(阴极)的各个传热和散热环节:靶材的热性能、靶材与冷套的热接触层、冷却介质的热性能、冷却介质与冷套的接触面积、冷却介质的流速(压力),冷却介质的后续换热功能和恒温功能。

4.         磁控溅射的靶材利用率问题。一般磁控靶的靶材利用率小于20%,经过特殊处理磁场的磁控溅射靶的靶材利用率可以达到40-50%左右。要想使靶材利用率进一步提高,只有采取垂直移动磁场的设计方案,即使如此,靶材利用率提高到75%以上仍然是相当困难的(特别对于矩形平面靶来说)。转动靶材的柱状靶虽然有较高的靶材利用率(大约80%左右),考虑到运行稳定性和冷却效率,常常也不能将其特点发挥到极限。所以说:增加靶结构的复杂程度来换取较高的靶材利用率,有一个得失评估的问题。

要想从根本上解决靶材利用率问题,可能还是要回到二极溅射模式,所以最近推出的离子束增强溅射引起人们的广泛重视。

5.         离子辅助溅射工艺。离子辅助镀膜(Ion Assisted Deposition)技术比较明确的兴起缘于光学蒸镀工艺中,在镀制高质量光学薄膜时,一个重要的工艺参数就是基片温度,一般要求320-350,而且同炉基片温差小于±1-2℃,由于温度测量的不准确性(静止定点测温与运动基片实际温度的差异、测温元件与基片的非接触测量产生的差异等),同炉温度场的不均匀性,光学厚度监控技术引起的差异,种种原因使镀膜质量总是有较大的偏差。采用IAD技术后,膜层质量的一致性有了极大地改善。抛开最近采用的激光测厚技术来说,IAD技术几乎是精密光学镀膜必不可少的措施。

l       IAD技术取代或改善了温度场在成膜过程中的作用,关键的一个参数是:轰击离子/沉积原子比,实验证明:I/A比等于1-4时,膜层质量就很好。轰击离子的能量大约70eV左右。这一点可能通过温度场对于膜层生长的热力学模拟,得到更为准确的解释。在非平衡磁控溅射和中频交流磁控溅射都观察到并分析过与IAD相同的工艺过程。

l       IAD技术与离子镀(Ion Plating)技术不同,各自的物理模型不一样,不能将偏压溅射与IAD技术混同起来。成膜过程中伴随适当能量的离子轰击对增加膜层附着力、降低膜层内应力、改善膜层结构、保证膜层组分比、获得光滑的膜层表面都有明显的效果。但是这个过程应该是可控的。过度的离子轰击反而会带来相反的效果,例如:沉积粒子的再溅射、晶格缺陷或位错增加、内应力变异、结晶表面粗化、膜层组分偏离、邻近结构对基片表面的污染等。

l       所谓“脉冲偏压溅射”(有的报道称为“等离子体源的离子注入”Plasma Source Ion ImplantationPSII)到是另有一番新意,在基片上施加1-3kV 脉冲偏压,膜层质量得到改善。延伸下去,如果基片上施加10-30kV, 300ns幅宽的陡前沿快脉冲偏压,膜层质量又会如何?

    综上所述,本文并不是要肯定什么或者否定什么,只是想提出一个问题:从工业应用的角度出发如何选择溅射镀膜的运行模式呢?在新世纪之初,溅射技术基础研究的讨论与实践应该引起同行间的重视了。

发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
 
  • 上一篇文章:

  • 下一篇文章:

  •  


          服务热线:+86-571-87396126  18868849222  传真:+86-571-87396125   mail:85021133@163.com  点这里留言
     版权所有:杭州国普科技有限公司. Copyright ©2007-2009 Hangzhou Guopu Technology Co., Ltd.
     销售部地址:杭州市西湖区塘苗路2号1503  邮编310013